 Contact
 Privacy

	Home
	Latest
	Oldest
	Popular
	Random

	Home»
	Categrories»
	Programming Languages»
	Python»

Create a Stunning PDF Flyer in Python with borb - Python

Uptime Web-HostDownload Mp3, VideosShort Link, Bio LinksWebsite SEO ReviwerShort Link,Earn MoneyWebsite SEO Reviwer

TAGS : Python PDF
Viewed: 262 - Published at: 2 years ago

[Create a Stunning PDF Flyer in Python with borb]
The Portable Document Format (PDF) is not a WYSIWYG (What You See is What You Get) format. It was developed to be platform-agnostic, independent of the underlying operating system and rendering engines.
To achieve this, PDF was constructed to be interacted with via something more like a programming language, and relies on a series of instructions and operations to achieve a result. In fact, PDF is based on a scripting language - PostScript, which was the first device-independent Page Description Language.
In this guide, we'll be using borb - a Python library dedicated to reading, manipulating and generating PDF documents. It offers both a low-level model (allowing you access to the exact coordinates and layout if you choose to use those) and a high-level model (where you can delegate the precise calculations of margins, positions, etc to a layout manager).

In this guide, we'll take a look at how to generate a flyer containing custom graphics (represented by PDF operators).

Installing borb

borb can be downloaded from source on GitHub, or installed via pip:

$ pip install borb

What We’ll Be Making

It's oftentimes easier to make a sketch, and work towards it, rather than building blind, so feel free to sketch out a flyer on a piece of paper you have lying around, and letting that creativity flow unto the canvas.
We'll be making a flyer like this, to promote a supposed product belonging to a supposed company:

Creating a PDF Document with borb

Building a PDF document in borb typically follows the same couple of steps:

	Creating an empty Document
	Creating an empty Page and appending it to the Document
	Setting a PageLayout on the Page
	Adding content to the PageLayout
	Persisting the Document

Let's see what that looks like in code:

from borb.pdf.document import Document
from borb.pdf.page.page import Page
from borb.pdf.canvas.layout.page_layout.multi_column_layout import SingleColumnLayout
from borb.pdf.canvas.layout.page_layout.page_layout import PageLayout
from borb.pdf.pdf import PDF

def main():
 # Create empty Document
 pdf = Document()

 # Create empty Page
 page = Page()

 # Add Page to Document
 pdf.append_page(page)

 # Create PageLayout
 layout: PageLayout = SingleColumnLayout(page)

 # Future content-rendering-code to be inserted here

 # Attempt to store PDF
 with open("output.pdf", "wb") as pdf_file_handle:
 PDF.dumps(pdf_file_handle, pdf)

if __name__ == '__main__':
 main()

Creating a PDF Flyer with borb

Now that we have an empty canvas to work from, let's add the basic content. We'll start by adding the title, such as "Your Company":

New imports
from borb.pdf.canvas.layout.text.paragraph import Paragraph
from borb.pdf.canvas.color.color import HexColor
from decimal import Decimal

Contact information
layout.add(
 Paragraph("Your Company",
 font_color=HexColor("#6d64e8"),
 font_size=Decimal(20)
)
)

The next step is adding the QR-code and the contact information. In order to easily present this content side by side, we're going to be using a Table.
We also need the coordinates of the QR-code (we'll be adding something special to it later on). So let's start by declaring that first:

New imports
from borb.pdf.canvas.layout.image.barcode import Barcode, BarcodeType
from borb.pdf.canvas.layout.layout_element import LayoutElement

Code to generate a QR code LayoutElement
qr_code: LayoutElement = Barcode(
 data="https://www.borbpdf.com",
 width=Decimal(64),
 height=Decimal(64),
 type=BarcodeType.QR,
)

Now we can build and add our Table:

 # New imports
from borb.pdf.canvas.layout.table.flexible_column_width_table import FlexibleColumnWidthTable

layout.add(
 FlexibleColumnWidthTable(number_of_columns=2, number_of_rows=1)
 .add(qr_code)
 .add(
 Paragraph(
 """
 500 South Buena Vista Street
 Burbank CA
 91521-0991 USA
 """,
 padding_top=Decimal(12),
 respect_newlines_in_text=True,
 font_color=HexColor("#666666"),
 font_size=Decimal(10),
)
)
 .no_borders()
)

Let's run that code and see what the generated PDF looks like. I find that the best way of tweaking the little UI/UX details.

Looking good! The QR-code is situated right under the company's name, contains the right contact information and actually encodes the contact data we've provided.

Next we're going to add a remote go-to annotation. That's just PDF-talk for "a clickable link that takes you outside the PDF".

We're going to make sure the entire QR-code is actually a link that takes the reader to our website. That way, if they have the printed version of this PDF they can simply scan the QR code. If they have the digital version, they can click the QR code.
This is a simple addition, but makes navigation on the user-end a more pleasant experience:

page.append_remote_go_to_annotation(
 qr_code.get_bounding_box(), uri="https://www.borbpdf.com"
)

Adding Product Information

We can now add the next title and subtitle(s), pertaining to a product we're creating a flyer for:

Title
layout.add(
 Paragraph(
 "Productbrochure", font_color=HexColor("#283592"), font_size=Decimal(34)
)
)

Subtitle
layout.add(
 Paragraph(
 "September 4th, 2021",
 font_color=HexColor("#e01b84"),
 font_size=Decimal(11),
)
)

And similarly, we'll add the product overview title, and some dummy text:

product overview
layout.add(
 Paragraph(
 "Product Overview", font_color=HexColor("000000"), font_size=Decimal(21)
)
)

layout.add(
 Paragraph(
 """
 Far far away, behind the word mountains, far from the countries Vokalia and Consonantia, there live the blind texts.
 Separated they live in Bookmarksgrove right at the coast of the Semantics, a large language ocean.
 A small river named Duden flows by their place and supplies it with the necessary regelialia.
 """
)
)

layout.add(
 Paragraph(
 """
 It is a paradisematic country, in which roasted parts of sentences fly into your mouth.
 Even the all-powerful Pointing has no control about the blind texts it is an almost unorthographic life.
 One day however a small line of blind text by the name of Lorem Ipsum decided to leave for the far World of Grammar.
 """,
 margin_bottom=Decimal(12)
)
)

Note: Pay attention to the last Paragraph where we explictly added a bottom margin. That's just a small visual tweak to ensure there's a bit more room between that Paragraph and the next piece of content, which will be an image.
When we run this code, we should get something like this:

Finally, we can add the product information. We could have an Image alongside a list of some of the features of the product. So again, we can use a Table to achieve the side-by-side look.
Oftentimes, there's a title above the list of features, so we're going to have a Table with 2 columns (image and features) and 2 rows (one for the title, and one for the features).
Since the table is being used not as a table, but rather just to achieve the side-by-side look, we won't be adding a border to the table:

New imports
from borb.pdf.canvas.layout.image.image import Image
from borb.pdf.canvas.layout.table.table import TableCell
from borb.pdf.canvas.layout.table.fixed_column_width_table import FixedColumnWidthTable
from borb.pdf.canvas.layout.list.unordered_list import UnorderedList

Table with image and key features
layout.add(
 FixedColumnWidthTable(
 number_of_rows=2,
 number_of_columns=2,
 column_widths=[Decimal(0.3), Decimal(0.7)],
)
 .add(
 TableCell(
 Image(
 "https://www.att.com/catalog/en/skus/images/apple-iphone%2012-purple-450x350.png",
 width=Decimal(128),
 height=Decimal(128),
),
 row_span=2,
)
)
 .add(
 Paragraph(
 "Key Features",
 font_color=HexColor("e01b84"),
 font="Helvetica-Bold",
 padding_bottom=Decimal(10),
)
)
 .add(
 UnorderedList()
 .add(Paragraph("Nam aliquet ex eget felis lobortis aliquet sit amet ut risus."))
 .add(Paragraph("Maecenas sit amet odio ut erat tincidunt consectetur accumsan ut nunc."))
 .add(Paragraph("Phasellus eget magna et justo malesuada fringilla."))
 .add(Paragraph("Maecenas vitae dui ac nisi aliquam malesuada in consequat sapien."))
)
 .no_borders()
)

Again, we've added a padding_bottom in some cells of the Table just to provide some extra space. The resulting PDF is almost finished:

The final steps remaining are adding the artwork in the top-right corner, and in the footer.

Using the Shape object in borb

borb can render any Shape to the Page. Shape represents an arbitrary sequence of points (represented as typing.Tuple[Decimal, Decimal]) all of which form a continuous line. This means that you can get quite creative with the shapes you want to create.
We'll start by defining a method that renders the triangles and squares in the upper right corner of the Page:

New imports
from borb.pdf.canvas.geometry.rectangle import Rectangle
from borb.pdf.canvas.layout.image.shape import Shape
from borb.pdf.page.page_size import PageSize
import typing
import random

def add_gray_artwork_upper_right_corner(page: Page) -> None:
 """
 This method will add a gray artwork of squares and triangles in the upper right corner
 of the given Page
 """
 grays: typing.List[HexColor] = [
 HexColor("A9A9A9"),
 HexColor("D3D3D3"),
 HexColor("DCDCDC"),
 HexColor("E0E0E0"),
 HexColor("E8E8E8"),
 HexColor("F0F0F0"),
]
 ps: typing.Tuple[Decimal, Decimal] = PageSize.A4_PORTRAIT.value
 N: int = 4
 M: Decimal = Decimal(32)

 # Draw triangles
 for i in range(0, N):
 x: Decimal = ps[0] - N * M + i * M
 y: Decimal = ps[1] - (i + 1) * M
 rg: HexColor = random.choice(grays)
 Shape(
 points=[(x + M, y), (x + M, y + M), (x, y + M)],
 stroke_color=rg,
 fill_color=rg,
).layout(page, Rectangle(x, y, M, M))

 # Draw squares
 for i in range(0, N - 1):
 for j in range(0, N - 1):
 if j > i:
 continue
 x: Decimal = ps[0] - (N - 1) * M + i * M
 y: Decimal = ps[1] - (j + 1) * M
 rg: HexColor = random.choice(grays)
 Shape(
 points=[(x, y), (x + M, y), (x + M, y + M), (x, y + M)],
 stroke_color=rg,
 fill_color=rg,
).layout(page, Rectangle(x, y, M, M))

We can now call this method in the main method, and give our PDF some extra pazzaz:

Similarly, we could add some graphics to the bottom of the page:

	A line to separate the footer from the main content of the page
	A small geometric element to balance the geometric graphic atop the page

Let's write another method to do all of that:

from borb.pdf.canvas.line_art.line_art_factory import LineArtFactory

def add_colored_artwork_bottom_right_corner(page: Page) -> None:
 """
 This method will add a blue/purple artwork of lines
 and squares to the bottom right corner
 of the given Page
 """
 ps: typing.Tuple[Decimal, Decimal] = PageSize.A4_PORTRAIT.value

 # Square
 Shape(
 points=[
 (ps[0] - 32, 40),
 (ps[0], 40),
 (ps[0], 40 + 32),
 (ps[0] - 32, 40 + 32),
],
 stroke_color=HexColor("d53067"),
 fill_color=HexColor("d53067"),
).layout(page, Rectangle(ps[0] - 32, 40, 32, 32))

 # Square
 Shape(
 points=[
 (ps[0] - 64, 40),
 (ps[0] - 32, 40),
 (ps[0] - 32, 40 + 32),
 (ps[0] - 64, 40 + 32),
],
 stroke_color=HexColor("eb3f79"),
 fill_color=HexColor("eb3f79"),
).layout(page, Rectangle(ps[0] - 64, 40, 32, 32))

 # Triangle
 Shape(
 points=[
 (ps[0] - 96, 40),
 (ps[0] - 64, 40),
 (ps[0] - 64, 40 + 32),
],
 stroke_color=HexColor("e01b84"),
 fill_color=HexColor("e01b84"),
).layout(page, Rectangle(ps[0] - 96, 40, 32, 32))

 # Line
 r: Rectangle = Rectangle(Decimal(0), Decimal(32), ps[0], Decimal(8))
 Shape(
 points=LineArtFactory.rectangle(r),
 stroke_color=HexColor("283592"),
 fill_color=HexColor("283592"),
).layout(page, r)

Again, we can call this method from the main method. The resulting page should look like this:

Conclusion

In this guide we've taken a look at some of the basic building blocks of PDF documents using borb. We've configured padding and margin, as well as font-size and font-color. We've also generated graphics using the Shape object, and a working clickable QR-code.
With these building blocks, we've created a flyer for a supposed product of an imaginary company, automating the process of creating interactive PDF documents.
Reference: stackabuse.com

Related Posts:

combining two images, multiplying RGB values to vignette an image Jython/Python

Design Trends 2020: Color schemes & Effetti visivi

DbSet, ModelBuilder, and EF Navigation Properties

Python Assigning value from one variable to another

Sending json ajax post request to asp.net mvc error

Is it possible to execute SQL commands and send MSMQ messages in a TransactionScope?

You may also like:

Features of Smart Contracts in DCI Ecosystem

Update only one file via application cache

are static and non static overloads each other

How to add a self signed trusted root authority in Opera?

Extending appengine's db.Property with caching

Data Table Partial Update from Ajax call

Categories
	Blog	Career
	Computer
	Downloads
	Internet
	Linux
	News
	Review
	Security
	Technology

	Database	MySql
	Oracle Database
	SQL Server
	SQLite
	mongodb

	Dev	Algorithm
	Android
	Batch File Programming
	Books
	Competitive Programming
	Computer Networks
	Data Structure
	Design
	Development
	Flutter
	Game
	Git
	Interview Questions
	JDBC
	Machine Learning
	Mobile
	Operating System
	Programming
	Projects
	Sponsored
	Webservice
	iOS

	Framework	.NET
	Angular
	Django
	MVC
	Nodejs
	React

	Programming Languages	ASP.NET
	C Programs
	C#
	C++ Programs
	CSS
	HTML
	JSP
	Java
	JavaScript
	PHP
	PL/SQL
	Python
	SQL
	Swift
	VB.NET

	Tools	privacy-policy-generator
	Mac Vendors
	Ports Numbers
	Wifi Routers Passwords

	Web Tools Online	Uptime Web-Host
	Download Mp3, Videos
	Short Link, Bio Links
	Website SEO Reviwer
	 Short Link,Earn Money
	 Website SEO Reviwer

Site all the data, are collected from Internet, belongs to original author, please do not used for commercial purposes !

 https://www.codevelop.art

 rootkbs@gmail.com

Posts
	Home
	Latest
	Oldest
	Popular
	Random

Follow Us
	
	
	
	
	
	
	

Uptime Web-HostDownload Mp3, VideosShort Link, Bio LinksWebsite SEO ReviwerShort Link,Earn MoneyWebsite SEO Reviwer

© 2018 codevelop.art - Coding Develop Art - programming and development tutorials blog - Learn all Program languages | codevelop.art.
All Rights Reserved.
	Contact
	Privacy
	Terms of service
	Copyright
	Disclaimer

