 Contact
 Privacy

	Home
	Latest
	Oldest
	Popular
	Random

	Home»
	Categrories»
	Programming Languages»
	Python»

Extract and Process PDF Invoices in Python with borb - Python

Uptime Web-HostDownload Mp3, VideosShort Link, Bio LinksWebsite SEO ReviwerShort Link,Earn MoneyWebsite SEO Reviwer

TAGS : Python PDF
Viewed: 461 - Published at: 2 years ago

[Extract and Process PDF Invoices in Python with borb]
Introduction

The Portable Document Format (PDF) is not a WYSIWYG (What You See is What You Get) format. It was developed to be platform-agnostic, independent of the underlying operating system and rendering engines.
To achieve this, PDF was constructed to be interacted with via something more like a programming language, and relies on a series of instructions and operations to achieve a result. In fact, PDF is based on a scripting language - PostScript, which was the first device-independent Page Description Language.
In this guide, we'll be using borb - a Python library dedicated to reading, manipulating and generating PDF documents. It offers both a low-level model (allowing you access to the exact coordinates and layout if you choose to use those) and a high-level model (where you can delegate the precise calculations of margins, positions, etc to a layout manager).

In this guide, we'll take a look at how to process a PDF invoice in Python using borb, by extracting text, since PDF is an extractable format - which makes it prone to automated processing.

Automating processing is one of the fundamental goals of machines, and if someone doesn't supply a parsable document, such as json alongside a human-oriented invoice - you'll have to parse the PDF contents yourself.

Installing borb

borb can be downloaded from source on GitHub, or installed via pip:

$ pip install borb

Creating a PDF Invoice in Python with borb

In the previous guide, we've generated a PDF invoice, using borb, which we'll now be processing.

If you'd like to read more about How to Create Invoices in Python with borb, we've got you covered!

The generated PDF document specifically looks like this:

Processing a PDF Invoice With borb

Let's start by opening the PDF file and loading it into a Document - the object-representation of the file:

import typing
from borb.pdf.document import Document
from borb.pdf.pdf import PDF

def main():
 d: typing.Optional[Document] = None
 with open("output.pdf", "rb") as pdf_in_handle:
 d = PDF.loads(pdf_in_handle)

 assert d is not None

if __name__ == "__main__":
 main()

The code follows the same pattern you might see in the json library; a static method, loads(), which accepts a file-handle, and outputs a data structure.
Next, we'd like to be able to extract all the text contents of the file. borb enables this by allowing you to register EventListener classes to the parsing of the Document.
For instance, whenever borb encounters some kind of text-rendering instruction it will notify all registered EventListener objects, which can then process the emitted Event.
borb comes with quite a few implementations of EventListener:

	SimpleTextExtraction : Extracts text from a PDF
	SimpleImageExtraction: Extracts all images from a PDF
	RegularExpressionTextExtraction: Matches a regular expression, and returns the matches per page
	etc.

We'll start by extracting all the text:

import typing
from borb.pdf.document import Document
from borb.pdf.pdf import PDF

New import
from borb.toolkit.text.simple_text_extraction import SimpleTextExtraction

def main():

 d: typing.Optional[Document] = None
 l: SimpleTextExtraction = SimpleTextExtraction()
 with open("output.pdf", "rb") as pdf_in_handle:
 d = PDF.loads(pdf_in_handle, [l])

 assert d is not None
 print(l.get_text_for_page(0))

if __name__ == "__main__":
 main()

This code-snippet should print all the text in the invoice, in reading order (top to bottom, left to right):

[Street Address] Date 6/5/2021
[City, State, ZIP Code] Invoice # 1741
[Phone] Due Date 6/5/2021
[Email Address]
[Company Website]
BILL TO SHIP TO
[Recipient Name] [Recipient Name]
[Company Name] [Company Name]
[Street Address] [Street Address]
[City, State, ZIP Code] [City, State, ZIP Code]
[Phone] [Phone]
DESCRIPTION QTY UNIT PRICE AMOUNT
Product 1 2 $ 50 $ 100
Product 2 4 $ 60 $ 240
Labor 14 $ 60 $ 840
Subtotal $ 1,180.00
Discounts $ 177.00
Taxes $ 100.30
Total $ 1163.30

This is of course not very useful to us as this would require more processing before we can do much with it, though this is a great start, especially compared to OCR-scanned PDF documents!

Let's refine this code and tell borb which Rectangle we are interested in.

For instance, let's extract the shipping information (but you can modify the code to retrieve any area of interest).
In order to allow borb to filter out a Rectangle we'll be using the LocationFilter class. This class implements EventListener. It gets notified of all Events when rendering the Page and passes those (to its children) that occur inside pre-defined bounds:

import typing
from decimal import Decimal

from borb.pdf.document import Document
from borb.pdf.pdf import PDF
from borb.toolkit.text.simple_text_extraction import SimpleTextExtraction

New import
from borb.toolkit.location.location_filter import LocationFilter
from borb.pdf.canvas.geometry.rectangle import Rectangle

def main():

 d: typing.Optional[Document] = None

 # Define rectangle of interest
 # x, y, width, height
 r: Rectangle = Rectangle(Decimal(280),
 Decimal(510),
 Decimal(200),
 Decimal(130))

 # Set up EventListener(s)
 l0: LocationFilter = LocationFilter(r)
 l1: SimpleTextExtraction = SimpleTextExtraction()
 l0.add_listener(l1)

 with open("output.pdf", "rb") as pdf_in_handle:
 d = PDF.loads(pdf_in_handle, [l0])

 assert d is not None
 print(l1.get_text_for_page(0))

if __name__ == "__main__":
 main()

Running this code, assuming that the right rectangle is chosen, prints:

SHIP TO
[Recipient Name]
[Company Name]
[Street Address]
[City, State, ZIP Code]
[Phone]

This code is not exactly the most flexible or future-proof. It takes some fiddling to find the right Rectangle, and there is no guarantee it will work if the layout of the invoice changes even slightly.

We're going to have to build something more robust, to have actual practical application.

We can start by removing the hard-coded Rectangle. RegularExpressionTextExtraction can match a regular expression and return (among other things) its coordinates on the Page! Using pattern-matching, we can search for elements in a document automatically and retrieve them, instead of guessing where to draw a rectangle.
Let's use this class to find the words "SHIP TO", and build a Rectangle based on those coordinates:

import typing
from borb.pdf.document import Document
from borb.pdf.pdf import PDF
from borb.pdf.canvas.geometry.rectangle import Rectangle

New imports
from borb.toolkit.text.regular_expression_text_extraction import RegularExpressionTextExtraction, PDFMatch

def main():

 d: typing.Optional[Document] = None

 # Set up EventListener
 l: RegularExpressionTextExtraction = RegularExpressionTextExtraction("SHIP TO")
 with open("output.pdf", "rb") as pdf_in_handle:
 d = PDF.loads(pdf_in_handle, [l])

 assert d is not None

 matches: typing.List[PDFMatch] = l.get_matches_for_page(0)
 assert len(matches) == 1

 r: Rectangle = matches[0].get_bounding_boxes()[0]
 print("%f %f %f %f" % (r.get_x(), r.get_y(), r.get_width(), r.get_height()))

if __name__ == "__main__":
 main()

Here, we've built a Rectangle around the section and printed its coordinates:

299.500000 621.000000 48.012000 8.616000

You will have noticed that get_bounding_boxes() returns typing.List[Rectangle]. This is the case when a regular expression is matched accross multiple lines of text in the PDF.

Also, keep in mind the origin of a PDF (the [0, 0] point) is located in the bottom left corner. So the top of the Page has the highest Y-coordinate.

Now that we know where to find "SHIP TO", we can update our earlier code to place the Rectangle of interest just underneath those words:

import typing
from decimal import Decimal

from borb.pdf.document import Document
from borb.pdf.pdf import PDF
from borb.pdf.canvas.geometry.rectangle import Rectangle
from borb.toolkit.location.location_filter import LocationFilter
from borb.toolkit.text.regular_expression_text_extraction import RegularExpressionTextExtraction, PDFMatch
from borb.toolkit.text.simple_text_extraction import SimpleTextExtraction

def find_ship_to() -> Rectangle:

 d: typing.Optional[Document] = None

 # Set up EventListener
 l: RegularExpressionTextExtraction = RegularExpressionTextExtraction("SHIP TO")
 with open("output.pdf", "rb") as pdf_in_handle:
 d = PDF.loads(pdf_in_handle, [l])

 assert d is not None

 matches: typing.List[PDFMatch] = l.get_matches_for_page(0)
 assert len(matches) == 1

 return matches[0].get_bounding_boxes()[0]
def main():

 d: typing.Optional[Document] = None

 # Define rectangle of interest
 ship_to_rectangle: Rectangle = find_ship_to()
 r: Rectangle = Rectangle(ship_to_rectangle.get_x() - Decimal(50),
 ship_to_rectangle.get_y() - Decimal(100),
 Decimal(200),
 Decimal(130))

 # Set up EventListener(s)
 l0: LocationFilter = LocationFilter(r)
 l1: SimpleTextExtraction = SimpleTextExtraction()
 l0.add_listener(l1)

 with open("output.pdf", "rb") as pdf_in_handle:
 d = PDF.loads(pdf_in_handle, [l0])

 assert d is not None
 print(l1.get_text_for_page(0))

if __name__ == "__main__":
 main()

And this code prints:

SHIP TO
[Recipient Name]
[Company Name]
[Street Address]
[City, State, ZIP Code]
[Phone]

This still requires some knowledge of the document, but isn't nearly as rigid as the previous approach - and as long as you know which text you'd like to extract - you can get coordinates and snatch the contents within a rectangle on tha page.

Conclusion

In this guide we've taken a look at how to process an invoice in Python using borb. We've started by extracting all the text, and refined our process to extract only a region of interest. Finally, we matched a regular expression against a PDF to make the process even more robust and future-proof.
Reference: stackabuse.com

Related Posts:

combining two images, multiplying RGB values to vignette an image Jython/Python

Design Trends 2020: Color schemes & Effetti visivi

DbSet, ModelBuilder, and EF Navigation Properties

Python Assigning value from one variable to another

Sending json ajax post request to asp.net mvc error

Is it possible to execute SQL commands and send MSMQ messages in a TransactionScope?

You may also like:

Features of Smart Contracts in DCI Ecosystem

Update only one file via application cache

are static and non static overloads each other

How to add a self signed trusted root authority in Opera?

Extending appengine's db.Property with caching

Data Table Partial Update from Ajax call

Categories
	Blog	Career
	Computer
	Downloads
	Internet
	Linux
	News
	Review
	Security
	Technology

	Database	MySql
	Oracle Database
	SQL Server
	SQLite
	mongodb

	Dev	Algorithm
	Android
	Batch File Programming
	Books
	Competitive Programming
	Computer Networks
	Data Structure
	Design
	Development
	Flutter
	Game
	Git
	Interview Questions
	JDBC
	Machine Learning
	Mobile
	Operating System
	Programming
	Projects
	Sponsored
	Webservice
	iOS

	Framework	.NET
	Angular
	Django
	MVC
	Nodejs
	React

	Programming Languages	ASP.NET
	C Programs
	C#
	C++ Programs
	CSS
	HTML
	JSP
	Java
	JavaScript
	PHP
	PL/SQL
	Python
	SQL
	Swift
	VB.NET

	Tools	privacy-policy-generator
	Mac Vendors
	Ports Numbers
	Wifi Routers Passwords

	Web Tools Online	Uptime Web-Host
	Download Mp3, Videos
	Short Link, Bio Links
	Website SEO Reviwer
	 Short Link,Earn Money
	 Website SEO Reviwer

Site all the data, are collected from Internet, belongs to original author, please do not used for commercial purposes !

 https://www.codevelop.art

 rootkbs@gmail.com

Posts
	Home
	Latest
	Oldest
	Popular
	Random

Follow Us
	
	
	
	
	
	
	

Uptime Web-HostDownload Mp3, VideosShort Link, Bio LinksWebsite SEO ReviwerShort Link,Earn MoneyWebsite SEO Reviwer

© 2018 codevelop.art - Coding Develop Art - programming and development tutorials blog - Learn all Program languages | codevelop.art.
All Rights Reserved.
	Contact
	Privacy
	Terms of service
	Copyright
	Disclaimer

