 Contact
 Privacy

	Home
	Latest
	Oldest
	Popular
	Random

	Home»
	Categrories»
	Programming Languages»
	Python»

Integrating Matplotlib Charts in a PDF in Python With borb - Python

Uptime Web-HostDownload Mp3, VideosShort Link, Bio LinksWebsite SEO ReviwerShort Link,Earn MoneyWebsite SEO Reviwer

TAGS : Python PDF data visualization matplotlib
Viewed: 303 - Published at: 2 years ago

[Integrating Matplotlib Charts in a PDF in Python With borb]
Introduction

The Portable Document Format (PDF) is not a WYSIWYG (What You See is What You Get) format. It was developed to be platform-agnostic, independent of the underlying operating system and rendering engines.
To achieve this, PDF was constructed to be interacted with via something more like a programming language, and relies on a series of instructions and operations to achieve a result. In fact, PDF is based on a scripting language - PostScript, which was the first device-independent Page Description Language.
In this guide, we'll be using borb - a Python library dedicated to reading, manipulating and generating PDF documents. It offers both a low-level model (allowing you access to the exact coordinates and layout if you choose to use those) and a high-level model (where you can delegate the precise calculations of margins, positions, etc to a layout manager).
Matplotlib is a data visualization library that fueled an entire generation of engineers to start visualizing data, and the engine behind many other popular libraries such as Seaborn.
Given how common PDF documents are for creating reports (which oftentimes include graphs), we'll take a look at how to integrate Matplotlib charts in a PDF document using borb.

Installing borb (and Matplotlib)

borb can be downloaded from source on GitHub, or installed via pip:

$ pip install borb

Matplotlib can be installed via pip:

$ pip install matplotlib

Integrating Matplotlib Charts in PDF Documents with borb

Before we can create a chart, such as a Pie Chart, we're going to write a small utility function that generates N colors, evenly distributed among the color-spectrum.
This will help us whenever we need to create a plot and color each section:

from borb.pdf.canvas.color.color import HSVColor, HexColor
from decimal import Decimal
import typing

def create_n_colors(n: int) -> typing.List[str]:
 # The base color is borb-blue
 base_hsv_color: HSVColor = HSVColor.from_rgb(HexColor("56cbf9"))
 # This array comprehension creates n HSVColor objects, transforms then to RGB, and then returns their hex string
 return [HSVColor(base_hsv_color.hue + Decimal(x / 360), Decimal(1), Decimal(1)).to_rgb().to_hex_string() for x in range(0, 360, int(360/n))]

 Note: HSL (hue, saturation, lightness) and HSV/HSB (hue, saturation, value/hue, saturation, brightness) are alternative representations of the RGB color model.

 HSL and HSV/HSB were designed in the 1970s by computer graphics researchers to more closely align with the way human vision perceives color-making attributes. In these models, colors of each hue are arranged in a radial slice, around a central axis of neutral colors which ranges from black at the bottom to white at the top:

Credits: Wikimedia (CC BY-SA 3.0) license
The advantage of using this representation for Color is that we can easily divide the color-spectrum in equal parts.
Now we can define a create_pie_chart() function (or a function for other types of plots):

New import(s)
import matplotlib.pyplot as plt
from borb.pdf.canvas.layout.image.chart import Chart
from borb.pdf.canvas.layout.layout_element import Alignment

def create_piechart(labels: typing.List[str], data: typing.List[float]):

 # Symetric figure to ensure equal aspect ratio
 fig1, ax1 = plt.subplots(figsize=(4, 4))
 ax1.pie(
 data,
 explode=[0 for _ in range(0, len(labels))],
 labels=labels,
 autopct="%1.1f%%",
 shadow=True,
 startangle=90,
 colors=create_n_colors(len(labels)),
)

 ax1.axis("equal") # Equal aspect ratio ensures that pie is drawn as a circle.

 return Chart(
 plt.gcf(),
 width=Decimal(200),
 height=Decimal(200),
 horizontal_alignment=Alignment.CENTERED,
)

Here, we've used Matplotlib to create a pie chart, via the pie() function.

If you'd like to learn more about creating Pie Charts, read our Guide to Matplotlib Pie Charts!

The gcf() function of the PyPlot instance returns the current figure (get current figure). This figure can be embedded into a PDF document, by injecting it in a Chart constructor, alongside your customization arguments such as the width, height and horizontal_alignment.
That's it! You just supply a Matplotlib figure to the Chart contructor.

Adding a Matplotlib Chart to a PDF Document

Now it's time to create our basic PDF Document and add content to it.

New import(s)
from borb.pdf.document import Document
from borb.pdf.page.page import Page
from borb.pdf.pdf import PDF
from borb.pdf.canvas.layout.page_layout.multi_column_layout import MultiColumnLayout
from borb.pdf.canvas.layout.page_layout.page_layout import PageLayout
from borb.pdf.canvas.layout.text.paragraph import Paragraph

Create empty Document
pdf = Document()

Create empty Page
page = Page()

Add Page to Document
pdf.append_page(page)

Create PageLayout
layout: PageLayout = MultiColumnLayout(page)

Write title
layout.add(Paragraph("About Lorem Ipsum",
 font_size=Decimal(20),
 font="Helvetica-Bold"))

We'll be using hyphenation in this PDF to ensure the text can be laid out even more smoothly. Hyphenation in borb is pretty straightforward:

New import(s)
from borb.pdf.canvas.layout.hyphenation.hyphenation import Hyphenation

Create hyphenation algorithm
hyphenation_algorithm: Hyphenation = Hyphenation("en-gb")

Write paragraph
layout.add(Paragraph(
 """
 Lorem Ipsum is simply dummy text of the printing and typesetting industry.
 Lorem Ipsum has been the industry's standard dummy text ever since the 1500s,
 when an unknown printer took a galley of type and scrambled it to make a type specimen book.
 It has survived not only five centuries, but also the leap into electronic typesetting, remaining essentially unchanged.
 It was popularised in the 1960s with the release of Letraset sheets containing Lorem Ipsum passages,
 and more recently with desktop publishing software like Aldus PageMaker including versions of Lorem Ipsum.
 """, text_alignment=Alignment.JUSTIFIED, hyphenation=hyphenation_algorithm))

Now we can add a piechart using the function we declared earlier;

Write graph
layout.add(create_piechart(["Loren", "Ipsum", "Dolor"],
 [0.6, 0.3, 0.1]))

Next we're going to write three more Paragraph objects.

One of them is going to be more of a quote (border on the side, different font, etc).

Write paragraph
layout.add(Paragraph(
 """
 Contrary to popular belief, Lorem Ipsum is not simply random text.
 It has roots in a piece of classical Latin literature from 45 BC, making it over 2000 years old.
 Richard McClintock, a Latin professor at Hampden-Sydney College in Virginia, looked up one of the more obscure Latin words,
 consectetur, from a Lorem Ipsum passage, and going through the cites of the word in classical literature,
 discovered the undoubtable source.
 """, text_alignment=Alignment.JUSTIFIED, hyphenation=hyphenation_algorithm))

Write paragraph
layout.add(Paragraph(
 """
 Lorem Ipsum is simply dummy text of the printing and typesetting industry.
 """,
 font="Courier-Bold",
 text_alignment=Alignment.JUSTIFIED,
 hyphenation=hyphenation_algorithm,
 border_color=HexColor("56cbf9"),
 border_width=Decimal(3),
 border_left=True,
 padding_left=Decimal(5),
 padding_bottom=Decimal(5),
))

Write paragraph
layout.add(Paragraph(
 """
 Lorem Ipsum comes from sections 1.10.32 and 1.10.33 of "de Finibus Bonorum et Malorum"
 (The Extremes of Good and Evil) by Cicero, written in 45 BC.
 This book is a treatise on the theory of ethics, very popular during the Renaissance.
 """, text_alignment=Alignment.JUSTIFIED, hyphenation=hyphenation_algorithm))

Let's add another plot

Write graph
layout.add(create_piechart(["Loren", "Ipsum", "Dolor", "Sit", "Amet"],
 [600, 30, 89, 100, 203]))

And one more Paragraph of content

Write paragraph
layout.add(Paragraph(
 """
 It is a long established fact that a reader will be distracted by the readable content of a page when looking at its layout.
 The point of using Lorem Ipsum is that it has a more-or-less normal distribution of letters, as opposed to using 'Content here, content here',
 making it look like readable English. Many desktop publishing packages and web page editors now use Lorem Ipsum as their default model text,
 and a search for 'lorem ipsum' will uncover many web sites still in their infancy.
 Various versions have evolved over the years, sometimes by accident, sometimes on purpose (injected humour and the like).
 """, text_alignment=Alignment.JUSTIFIED, hyphenation=hyphenation_algorithm))

Finally, we can store the Document:

Write to disk
with open("output.pdf", "wb") as pdf_file_handle:
 PDF.dumps(pdf_file_handle, pdf)

Running this code results in a PDF document that looks like this:

Conclusion

In this guide you've learned how to integrate Matplotlib charts in a PDF using borb. From here, the sky is the limit! The more creative you get with data visualization, the nicer your PDFs will be.
Reference: stackabuse.com

Related Posts:

combining two images, multiplying RGB values to vignette an image Jython/Python

Design Trends 2020: Color schemes & Effetti visivi

DbSet, ModelBuilder, and EF Navigation Properties

Python Assigning value from one variable to another

Sending json ajax post request to asp.net mvc error

Is it possible to execute SQL commands and send MSMQ messages in a TransactionScope?

You may also like:

Features of Smart Contracts in DCI Ecosystem

Update only one file via application cache

are static and non static overloads each other

How to add a self signed trusted root authority in Opera?

Extending appengine's db.Property with caching

Data Table Partial Update from Ajax call

Categories
	Blog	Career
	Computer
	Downloads
	Internet
	Linux
	News
	Review
	Security
	Technology

	Database	MySql
	Oracle Database
	SQL Server
	SQLite
	mongodb

	Dev	Algorithm
	Android
	Batch File Programming
	Books
	Competitive Programming
	Computer Networks
	Data Structure
	Design
	Development
	Flutter
	Game
	Git
	Interview Questions
	JDBC
	Machine Learning
	Mobile
	Operating System
	Programming
	Projects
	Sponsored
	Webservice
	iOS

	Framework	.NET
	Angular
	Django
	MVC
	Nodejs
	React

	Programming Languages	ASP.NET
	C Programs
	C#
	C++ Programs
	CSS
	HTML
	JSP
	Java
	JavaScript
	PHP
	PL/SQL
	Python
	SQL
	Swift
	VB.NET

	Tools	privacy-policy-generator
	Mac Vendors
	Ports Numbers
	Wifi Routers Passwords

	Web Tools Online	Uptime Web-Host
	Download Mp3, Videos
	Short Link, Bio Links
	Website SEO Reviwer
	 Short Link,Earn Money
	 Website SEO Reviwer

Site all the data, are collected from Internet, belongs to original author, please do not used for commercial purposes !

 https://www.codevelop.art

 rootkbs@gmail.com

Posts
	Home
	Latest
	Oldest
	Popular
	Random

Follow Us
	
	
	
	
	
	
	

Uptime Web-HostDownload Mp3, VideosShort Link, Bio LinksWebsite SEO ReviwerShort Link,Earn MoneyWebsite SEO Reviwer

© 2018 codevelop.art - Coding Develop Art - programming and development tutorials blog - Learn all Program languages | codevelop.art.
All Rights Reserved.
	Contact
	Privacy
	Terms of service
	Copyright
	Disclaimer

